Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Pharmacol ; 222: 116082, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38438052

ABSTRACT

Toll-like receptors (TLRs) have become a focus in biomedicine and biomedical research given the roles of this unique family of innate immune proteins in immune activation, infection, and autoimmunity. It is evident that TLR dysregulation, and subsequent alterations in TLR-mediated inflammatory signalling, can contribute to disease pathogenesis, and TLR targeted therapies are in development. This review highlights evidence that cannabinoids are key regulators of TLR signalling. Cannabinoids include component of the plant Cannabis sativa L. (C. sativa), synthetic and endogenous ligands, and overall represent a class of compounds whose therapeutic potential and mechanism of action continues to be elucidated. Cannabinoid-based medicines are in the clinic, and are furthermore under intense investigation for broad clinical development to manage symptoms of a range of disorders. In this review, we present an overview of research evidence that signalling linked to a range of TLRs is targeted by cannabinoids, and such cannabinoid mediated effects represent therapeutic avenues for further investigation. First, we provide an overview of TLRs, adaptors and key signalling events, alongside a summary of evidence that TLRs are linked to disease pathologies. Next, we discuss the cannabinoids system and the development of cannabinoid-based therapeutics. Finally, for the bulk of this review, we systematically outline the evidence that cannabinoids (plant-derived cannabinoids, synthetic cannabinoids, and endogenous cannabinoid ligands) can cross-talk with innate immune signalling governed by TLRs, focusing specifically on each member of the TLR family. Cannabinoids should be considered as key regulators of signalling controlled by TLRs, and such regulation should be a major focus in terms of the anti-inflammatory propensity of the cannabinoid system.


Subject(s)
Cannabinoids , Cannabinoids/pharmacology , Cannabinoids/therapeutic use , Cannabinoids/metabolism , Toll-Like Receptors , Signal Transduction , Endocannabinoids , Cannabinoid Receptor Modulators , Ligands , Receptors, Cannabinoid
2.
J Neurosci ; 43(32): 5870-5879, 2023 08 09.
Article in English | MEDLINE | ID: mdl-37491315

ABSTRACT

Amyloid ß protein (Aß) and tau, the two main proteins implicated in causing Alzheimer's disease (AD), are posited to trigger synaptic dysfunction long before significant synaptic loss occurs in vulnerable circuits. Whereas soluble Aß aggregates from AD brain are well recognized potent synaptotoxins, less is known about the synaptotoxicity of soluble tau from AD or other tauopathy patient brains. Minimally manipulated patient-derived aqueous brain extracts contain the more diffusible native forms of these proteins. Here, we explore how intracerebral injection of Aß and tau present in such aqueous extracts of patient brain contribute to disruption of synaptic plasticity in the CA1 area of the male rat hippocampus. Aqueous extracts of certain AD brains acutely inhibited long-term potentiation (LTP) of synaptic transmission in a manner that required both Aß and tau. Tau-containing aqueous extracts of a brain from a patient with Pick's disease (PiD) also impaired LTP, and diffusible tau from either AD or PiD brain lowered the threshold for AD brain Aß to inhibit LTP. Remarkably, the disruption of LTP persisted for at least 2 weeks after a single injection. These findings support a critical role for diffusible tau in causing rapid onset, persistent synaptic plasticity deficits, and promoting Aß-mediated synaptic dysfunction.SIGNIFICANCE STATEMENT The microtubule-associated protein tau forms relatively insoluble fibrillar deposits in the brains of people with neurodegenerative diseases including Alzheimer's and Pick's diseases. More soluble aggregates of disease-associated tau may diffuse between cells and could cause damage to synapses in vulnerable circuits. We prepared aqueous extracts of diseased cerebral cortex and tested their ability to interfere with synaptic function in the brains of live rats. Tau in these extracts rapidly and persistently disrupted synaptic plasticity and facilitated impairments caused by amyloid ß protein, the other major pathologic protein in Alzheimer's disease. These findings show that certain diffusible forms of tau can mediate synaptic dysfunction and may be a target for therapy.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Male , Rats , Animals , Amyloid beta-Peptides/metabolism , Long-Term Potentiation , Alzheimer Disease/metabolism , tau Proteins/metabolism , Neuronal Plasticity , Synapses/metabolism , Hippocampus/metabolism , Brain/metabolism
3.
Front Psychiatry ; 11: 599588, 2020.
Article in English | MEDLINE | ID: mdl-33551869

ABSTRACT

Major depressive disorder (MDD) is the leading cause of disability worldwide. The majority of antidepressant drugs require several weeks or months of treatment to demonstrate efficacy and a subset of patients are resistant to such interventions. Ketamine demonstrates rapid and long-lasting antidepressant effects in treatment resistant patients; however, side effects may limit its widespread clinical utility. The pharmaceutical industry is engaged in developing novel rapid-acting antidepressant drugs and the establishment of clinically relevant assays are needed to advance this process. Wistar Kyoto (WKY) rats are a valuable model of many of the characteristics of MDD and their resistance to selective serotonin reuptake inhibitors (SSRIs) in several behavioral paradigms emulates treatment resistance in clinical populations. Here, we confirmed the depressive-like phenotype of WKY rats in comparison to Sprague Dawley rats, characterized by increased immobility in the forced swim test, decreased locomotor activity and entries to the centre in the open field test, anhedonia in the female urine sniffing test and working memory deficits in the delayed non-match to position task. Single subcutaneous administration of 5 mg/kg ketamine in WKY rats mirrored the plasma exposure produced by the antidepressant dose in the clinic and rescued depressive-like behaviors. The same dose induced transient side effects, including decreased locomotor activity and reduced positive affect-associated vocalizations. Furthermore, ketamine acutely impaired working memory but induced pro-cognitive effects at a later time point. These data confirm the WKY rat as a preclinical model of depression. Ketamine's efficacy in recovering this depressive-like phenotype while inducing transient dissociative-like effects supports this as a translational model suitable for investigating novel antidepressant drugs.

4.
Brain Behav Immun ; 65: 20-32, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28179108

ABSTRACT

Over the last decade, there has been increased interest in the role of the gut microbiome in health including brain health. This is by no means a new theory; Elie Metchnikoff proposed over a century ago that targeting the gut by consuming lactic acid bacteria such as those in yogurt, could improve or delay the onset of cognitive decline associated with ageing. However, there is limited information characterising the relationship between the behavioural and physiological sequelae of ageing and alterations in the gut microbiome. To this end, we assessed the behavioural, physiological and caecal microbiota profile of aged male mice. Older mice (20-21months old) exhibited deficits in spatial memory and increases in anxiety-like behaviours compared to younger mice (2-3months old). They also exhibited increased gut permeability, which was directly correlated with elevations in peripheral pro-inflammatory cytokines. Furthermore, stress exacerbated the gut permeability of aged mice. Examination of the caecal microbiota revealed significant increases in phylum TM7, family Porphyromonadaceae and genus Odoribacter of aged mice. This represents a shift of aged microbiota towards a profile previously associated with inflammatory disease, particularly gastrointestinal and liver disorders. Furthermore, Porphyromonadaceae, which has also been associated with cognitive decline and affective disorders, was directly correlated with anxiety-like behaviour in aged mice. These changes suggest that changes in the gut microbiota and associated increases in gut permeability and peripheral inflammation may be important mediators of the impairments in behavioural, affective and cognitive functions seen in ageing.


Subject(s)
Age Factors , Brain/microbiology , Gastrointestinal Microbiome/physiology , Animals , Anxiety/microbiology , Anxiety/physiopathology , Behavior, Animal/physiology , Brain/physiology , Cognition/physiology , Cytokines/blood , Gastrointestinal Tract/microbiology , Inflammation , Male , Mice , Mice, Inbred C57BL/microbiology , Microbiota/physiology , Porphyromonas/metabolism , Porphyromonas/pathogenicity
5.
Br J Pharmacol ; 172(16): 3950-63, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25951750

ABSTRACT

The processes underpinning post-developmental neurogenesis in the mammalian brain continue to be defined. Such processes involve the proliferation of neural stem cells and neural progenitor cells (NPCs), neuronal migration, differentiation and integration into a network of functional synapses within the brain. Both intrinsic (cell signalling cascades) and extrinsic (neurotrophins, neurotransmitters, cytokines, hormones) signalling molecules are intimately associated with adult neurogenesis and largely dictate the proliferative activity and differentiation capacity of neural cells. Cannabinoids are a unique class of chemical compounds incorporating plant-derived cannabinoids (the active components of Cannabis sativa), the endogenous cannabinoids and synthetic cannabinoid ligands, and these compounds are becoming increasingly recognized for their roles in neural developmental processes. Indeed, cannabinoids have clear modulatory roles in adult neurogenesis, probably through activation of both CB1 and CB2 receptors. In recent years, a large body of literature has deciphered the signalling networks involved in cannabinoid-mediated regulation of neurogenesis. This timely review summarizes the evidence that the cannabinoid system is intricately associated with neuronal differentiation and maturation of NPCs and highlights intrinsic/extrinsic signalling mechanisms that are cannabinoid targets. Overall, these findings identify the central role of the cannabinoid system in adult neurogenesis in the hippocampus and the lateral ventricles and hence provide insight into the processes underlying post-developmental neurogenesis in the mammalian brain.


Subject(s)
Cannabinoids/metabolism , Neurogenesis/physiology , Animals , Humans , Signal Transduction
6.
Trends Neurosci ; 38(1): 13-25, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25705750

ABSTRACT

Both ageing and chronic stress are associated with altered brain plasticity, dysregulation of the immune system, and an increased risk of developing brain disorders; all of which have consequences for cognitive and emotional processing. Here we examine the similarities between behavioural changes during ageing and stress altered behaviours (anxiety, depressive-like behaviour, cognition, and sociability) in rodents and humans. The molecular mechanisms hypothesised to mediate age-related changes in brain function including dysfunction of the hypothalamic­pituitary­adrenal (HPA) axis, dysregulation of neurotransmission and neurotrophic factor signalling, increased inflammatory state, genetic and epigenetic changes, oxidative stress, metabolic changes, and changes in the microbiota­gut­brain axis are discussed. Finally, we explore how the already stressed aged brain psychologically and physiologically responds to external stressors.


Subject(s)
Aging/physiology , Brain/physiopathology , Stress, Psychological/physiopathology , Animals , Chronic Disease , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/physiopathology , Humans , Microbiota/physiology , Social Behavior
SELECTION OF CITATIONS
SEARCH DETAIL
...